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Overview
• Quantum (and classical) phase transitions

• Critical points, exponents, and universality

• Quantum information perspective

• Ground state fidelity

• Time dependent GSF and decoherence

• Algorithms and experimental 
implementation with NMR & cold atoms



Quantum phase transitions
In general, a QPT occurs in a quantum many body 
system when there is competition between two 

parts of the total Hamiltonian:

H = H0 + λH1

λc
0

Ground
state of H0

Ground
state of H1

(T=0)



Quantum phase transitions
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Example: Ising chain with transverse field
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• At the critical point:

• The gap closes (in thermodynamical 
limit), equivalent to critical slowing down 
(τ~1/Δ)

• Quantum correlations diverge with 
critical exponents ξ~|λ-λc|-ν

• Universality (as in classical PT) can be 
defined and observed

Quantum phase transitions
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• Scaling of entanglement at the critical point (not 
surprising, entanglement ~ correlations)

• Alas, we’ll take another route 

QPTs and quantum information

Osterloh, Amico, Falci, 
and Fazio, Nature 
416, 608 (2002)

http://lanl.arxiv.org/find/quant-ph/1/au:+Osterloh_A/0/1/0/all/0/1
http://lanl.arxiv.org/find/quant-ph/1/au:+Osterloh_A/0/1/0/all/0/1
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http://lanl.arxiv.org/find/quant-ph/1/au:+Amico_L/0/1/0/all/0/1
http://lanl.arxiv.org/find/quant-ph/1/au:+Falci_G/0/1/0/all/0/1
http://lanl.arxiv.org/find/quant-ph/1/au:+Falci_G/0/1/0/all/0/1
http://lanl.arxiv.org/find/quant-ph/1/au:+Fazio_R/0/1/0/all/0/1
http://lanl.arxiv.org/find/quant-ph/1/au:+Fazio_R/0/1/0/all/0/1


QPTs and fidelity

Ground state fidelity:

fδ(λ) = 〈g(λ)|g(λ + δ)〉

Rationale: two ground states in the same phase are very 
similar, and orthogonal if in different phases.

Rationale works, and 
fidelity contains much 
more information than 
just the critical point

Cozzini, Ionicioiu, Zanardi, Phys. 
Rev. B 76, 104420 (2007)

http://lanl.arxiv.org/find/cond-mat/1/au:+Cozzini_M/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Cozzini_M/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Ionicioiu_R/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Ionicioiu_R/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Zanardi_P/0/1/0/all/0/1
http://lanl.arxiv.org/find/cond-mat/1/au:+Zanardi_P/0/1/0/all/0/1


Ground state fidelity

Type of discontinuity depends on the order of transition

Cozzini, Giorda, Zanardi
quant-ph/0608059

•A first order QPT ( a kink in the 
GS energy) appears as a 
discontinuous fidelity.

•Second order QPTs appear 
continuous with a diverging 
derivative (in thermodynamic limit)



Ground state fidelity

The scaling of the second derivative of the fidelity 
relates to the critical exponents

Cozzini, Ionicioiu, Zanardi, Phys. 
Rev. B 76, 104420 (2007)

Argument using matrix product states QPTs:

fδ(λ) ! 1 +
∂2f

∂δ2

∣∣∣∣
δ=0

δ2

2
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δ2

2
Susceptibility

|g >=
∑

i1,i2...,iN

Tr(Ai1 ...AiN )|i1...iN >

d−1∑
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A∗
i (λ1)⊗Ai(λ2)fδ(λ) =

D2∑

k=1

vN
k

S(λ) ! N∂λ1∂λ2 ln v1(λ1,λ2)|λ1=λ2=λ

Scrit/N = Nρ/νQ(N |λ− λc|ν)
Also see Venuti and Zanardi, 
PRL 99, 095701 (2007)
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http://lanl.arxiv.org/find/cond-mat/1/au:+Ionicioiu_R/0/1/0/all/0/1
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Time dependent GSF

Switch to time domain
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A Loschmidt echo
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∣

∣

〈

g(λ)|eiHλte−iHλ+δt|g(λ)
〉
∣
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• Quantum chaos 
• Measures sensitivity to perturbations
• Measures fidelity of a quantum simulation
• Measures decoherence

Dλ(ω) = 〈g(λ)| δ(ω −Hλ+δ) |g(λ)〉
A local density 

of states



Loschmidt echo and decoherence

ρ(0) =

(

|a|2 ab∗

a∗b |b|2

)

ρ(t) =

(

|a|2 ab∗m(t)
a∗bm∗(t) |b|2

)

Hλ
δ

FMC et al PRA 75, 032337 (2007)

H = H1 ⊗ I + λH2 ⊗ I + δ H2 ⊗ σZ

H↑ = H1 + (λ + δ)H2

H↓ = H1 + (λ − δ)H2

Product initial state

m(t) = 〈ε↑|ε↓〉 = 〈ε0| e
iHλ+δt

e
−iHλ−δt |ε0〉

|ψ(0)〉 = |ε0〉 (a |↑〉 + b |↓〉)

|ψ(t)〉 = a |↑〉 |ε↑〉 + b |↓〉 |ε↓〉

Decoherence from a critical environment
Quan et al PRL 96, 140604 (2006),



Sensitivity to perturbations is used to detect proximity to critical 
point: far from λc, evolutions are similar, near λc system undergoes 
large changes even for small perturbation.

QPTs and the Loschmidt echo

Quan et al PRL 96, 
140604 (2006)
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Long time behavior

Result from quantum chaos: M decays to 
1/# states needed to represent 
unperturbed states with perturbed 
Hamiltonian = strong decay only near 
critical point.



QPTs and the Loschmidt echo

M(t) =
∣

∣

〈

g(λ)|eiHλte−iHλ+δt|g(λ)
〉
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Short time behavior

Perturbation theory gives:

M(t) ≅ exp[-α(λ) δ2t2]

Where α is monotonic with λ, first 
derivative has singularity at critical point.

Numerical evidence (no proof) suggests 
that critical exponents are encoded in 
higher derivatives of α.
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FIG. 3: Short-time behavior of the Loschmidt echo: a) mag-
nification of the plot in Fig. 2 for t ≤ 0.6, where a Gaussian

decay L ∼ e−αt
2

is visible; b) dependence of α on λ (the solid
red line shows the perturbative estimate given by Eq. (26)).

factor D(t) of Eq. (8) can be expanded in series of ε:

〈eiHgt e−iHet〉 =

〈

T
[

exp

(

−i

∫ t

0
dt′eiHgt′We−iHgt′

)]〉

$ 1 + ελ1 + ε2λ2 , (23)

where T is the time ordered product and W = ε σz
1 ac-

counts for the interaction of the two-level system with
the spin chain. The above expression has to be evalu-
ated on the ground state of Hg, therefore it is useful to
rewrite the interaction W in terms of the normal mode
operators η(g)

k of Hg:

W = ε

[

2
∑

i,j

(
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(g)
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† + hi,1η
(g)
i

)

·

·
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(g)
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(g)
j

†
)

− 1

]

.

The first-order term then reads

λ1 = −it

(

2
∑

i

|hi,1|2 − 1

)

, (24)

while the second-order term is given by

λ2 = −
∫ t

0
dt′

∫ t′

0
dt′′

[

4
∑

i#=j

(

(gi,1hj,1)
2

− gi,1gj,1hi,1hj,1

)

e−i(Ei+Ej)(t
′−t′′)

+
(

2
∑

i

|hi,1|2 − 1
)2

]

. (25)

The Loschmidt echo is then evaluated by taking the
square modulus of the decoherence factor:

L(t) $ 1 − 4ε2t2
∑

i#=j

[

(gi,1hj,1)
2 − gi,1gj,1hi,1hj,1

]

. (26)
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FIG. 4: Single-link Ising model (m = 1, ∆ = 0, γ = 1): Be-
havior of the Loschmidt echo of Eq. (21) at short times. The
plot shows the rescaled parameter ∂λα/ε2 as a function of λ
for a periodic N = 200 Ising spin chain. Various symbols are
for different values of the coupling strength ε. Inset: plot in
a semi-logarithmic scale. The dashed line indicates a fit of
numerical data: ∂λα/ε2 = c̃1 log |∆λ| + c̃2, with c̃1 ≈ 0.40983
and c̃2 ≈ 0.000108.

In Fig. 3b the initial Gaussian rate α is plotted as a
function of λ; circles represent numerical data, while the
solid red curve is the perturbative estimate obtained from
second-order perturbation theory, given by Eq. (26). In
Fig. 4 we analyze the behavior of the first derivative of the
rate α(λ, ε) as a function of the distance from criticality
∆λ ≡ λ−λc, for a fixed number N of spins in the chain.
As predicted by the perturbative estimate, α scales like
ε2; most remarkably, its first derivative with respect to
the transverse field diverges if the environment is at the
critical point λc. In the inset we show that ∂λα diverges
logarithmically on approaching the critical value, as:

∂α

∂λ
= c1 ln |λ − λc| + const. (27)

This is a universal feature, entirely due to the underlying
criticality of the Ising model.

Our results show that at short times the Loschmidt
echo is regular even in the presence of a bath undergoing
a phase transition. The critical properties of the bath
manifest in the changes of L when the bath approaches
the critical point.

3. Long-time behavior

At long times, for λ > 1 the Loschmidt echo ap-
proaches an asymptotic value L∞, while for λ < 1 it
oscillates around a constant value (see Fig. 2 for a qual-
itative picture). This limit value L∞ strongly depends
on λ and presents a cusp at the critical point, as shown

≅ log |λ-λc|



• Decay rate has universality features

QPTs and the Loschmidt echo

FMC et al PRA 75, 032337 (2007)

H(λ) =
∑

k

εk(λ)
(
γ†

k(λ)γk(λ) + 1/2
)

γk(λ1) = cos(θk)γk(λ2)− i sin(θk)γ†
−k(λ2)

m(t) =
∏

k>0

cos2(θk)eiεk(λ2)t + sin2(θk)e−iεk(λ2)t

fd(λ) =
∏

k>0

cos(θk)

|m(t)|2 = exp(−σ2
N t2)|cos(ε̄t)|N

Weighted angle 
variance Energy mean



QPTs and the Loschmidt echo

Rossini et al,  Phys. Rev. A 75, 032333 (2007)
Zanardi et al PRA 75, 032109 (2007)

• Temperature is ok (not so high)

• Coupling to environment 
(perturbation) can be local



• Prepare initial state (can be T>0)

• Measure decoherence vs λ
• Minimum decoherence signals critical point, 

derivatives give critical exponents

• An instance of a 1-qubit quantum computer...?

• But we can get rid of the other part using a 
quantum simulator

The “Algorithm”
Hλ

δ

FMC et al PRA 
75, 032337 (2007)
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FIG. 5: (Color online) Experimental overlap L for ε = 0.2 marked by ”*” and ε = 0.3 marked by

”×”. The experimental data are fitted to aL0, and yielded a = 0.84 and 0.77, respectively, shown

as the dark and light curves, where L0 denotes the corresponding theoretical result.
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FIG. 6: Experimental results in TCE, when the perturbation ε = 0.2, denoted by ”+”, and

ε = 0.125 denoted by ”×”. The theoretical expectation values are indicated by the thick and thin

curves, corresponding to ε = 0.2 and ε = 0.125.
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Zhang, FMC, and Laflamme, in preparation



• The LE can be achieved by changing the sign of H (imperfect 
time reversal)

Time reversal in an optical lattice

M(t) =
∣

∣

〈

g(λ)|eiHλte−iHλ+δt|g(λ)
〉
∣

∣

2

2U 6U

J J J

FMC quant-ph/0609202

H = -J ∑<i,j> ai†aj+aj†ai   + U ∑i ni(ni-1)

U ∝ aS ∫ |ψw(r)|2 d3r
A Feshbach resonance 
is used to tune aS ⇒ -aS

eiFτxai†ai+1 e-iFτx 
⇒ eiFτai†ai+1

Fτ =π ≡ J⇒-J

Apply linear ramp potential 
of slope F for a short time τ



Time reversal in an optical lattice

Further, we can make sensors by putting the 
system near criticality and looking at decay of M

FMC quant-ph/0609202

t 2t0

ψ
0prepare

ψ
0measure

π phase imprinting

magnetic field

Perform time reversal 
with fixed error and look 

at decay of M as a 
function of parameters

0.1
t [h/U]
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g f

(t)
t2

t4

1 10
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• Quantum information brings a fresh perspective to the 
quantum phase transitions field.

• Fidelity is well suited for certain transitions where study 
of correlations needs very large systems.

• Fidelity works well with MPS (and PEPS?) classical 
simulations (can it provide better estimates of critical 
points, exponents?).

• Study/define non-equilibrium quantum phase transitions

• What is the behavior of classical fidelity in normal PT?

Conclusions


